
Multivariable analysis 2021-2022

Exam, Wednesday 26 January, 16:00-18:00

• Below you can find the exam questions. The number of points per question is indicated in a

box. There are 4 questions summing up to 90 points, and you get 10 points for free.

• Please provide proper arguments when writing your solutions. Answers not accompanied by

explanations do not count as such. At the same time, try not to overdo it. You may use all

of the results covered in this course, you don’t have to justify them separately. It suffices to

give a (correct) statement and apply it to your question.

• When handing in your solutions, please do not forget to write your name and student number

on the envelope.

• Good luck!

Solutions

1. 8+12 = 20 pts Verify that the following maps are two times differentiable at the origin

O ∈ R2 and compute their first and second differentials at O (in matrix form):

i) F (x, y) = (x− y,
√
x6 + y6) : R2 → R2;

ii) f(x, y) : R2 → R, where the function f is given by

f(x, y) =

∫ x

0

∫ y

0

et
2+s2dtds;

i) F = (f1, f2) = (x− y,
√
x6 + y6) is k times differentiable if and only if its components f1

and f2 are k times differentiable.

Since f1 = x− y is linear, it is two times differentiable (everywhere).

The second component f2 =
√
x6 + y6 has continuous first and second order partial deriva-

tives, which shows that f2 is C2 on R2 and hence twice differentiable everywhere.

Moreover, at the origin, the first and second partial derivatives of f2 are zero. Hence Df2|0,0
and D2f2|0,0 vanish.

Since Df1 = (1,−1) and D2f1 vanishes, we get

DF |0,0 =

(
1 −1

0 0

)
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and D2F |0,0 is a zero matrix (of size 4×2 if one views D2F |0,0 as a linear map D2F |0,0 : R2 →
L(R2,R2) ' R4).

ii) Observe that et
2+s2 is C∞ (hence continuous). Hence

∂f

∂x
= ex

2

∫ y

0

et
2

dt,
∂2f

∂x2
= 2xex

2

∫ y

0

et
2

dt and
∂2f

∂y∂x
= ex

2+y2 .

Applying Fubini’s theorem, we get that the remaining partial derivatives are obtained by

interchanging x and y:

∂f

∂y
= ey

2

∫ x

0

es
2

ds,
∂2f

∂y2
= 2yey

2

∫ x

0

es
2

ds and
∂2f

∂x∂y
= ex

2+y2 .

This shows that f is C2 (even C∞) and hence twice differentiable everywhere. Substituting

x = y = 0, gives

∂f

∂x
|0,0 =

∂f

∂y
|0,0 = 0,

∂2f

∂x2
|0,0 =

∂2f

∂y2
|0,0 = 0, and

∂2f

∂y∂x
|0,0 = 1.

Therefore, Df |0,0 = (0, 0), and

D2f |0,0 =

(
0 1

1 0

)
.

2. 3+8+14 = 25 pts Consider the following linear differential equation

x′′ + (cos t)x′ − (sin t)x = 0. (1)

i) Find a particular solution of (1) using the substitution x = ec sin t, c ∈ R;

ii) Write (1) in matrix form (
x′1
x′2

)
= A(t)

(
x1

x2

)
and solve the differential equation W ′ = Tr(A(t))W for the Wronskian W ;

iii) Use i) and ii) to find a fundamental system of independent solutions of (1).

Hint: recall that W (when non-zero) is the determinant of a fundamental matrix.

i) Substitution of x = ec sin t into (1) gives c = −1, so x = e− sin t is a particular solution.
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ii) The equation in matrix form is obtained by setting x1 = x, x2 = x′. This gives x′1 = x2

and x′2 + (cos t)x2 − (sin t)x1 = 0, which can be written as(
x′1
x′2

)
=

(
0 1

sin t − cos t

)(
x1

x2

)
.

Hence Tr(A(t)) = − cos t and W ′ = Tr(A(t))W takes the form W ′ = −(cos t)W . We get that

W = be− sin t, where b is an arbitrary constant, which is non-zero for independent solutions.

iii) Let x(t) = e− sin t be the solution found in i) and y(t) be an independent solution. Then

W = det

(
x(t) y(t)

x′(t) y′(t)

)

is a Wronskian. Hence, from ii), we get the equation x(t)y′(t)− y(t)x′(t) = be− sin t. If y(t) is

independent from x(t), then b 6= 0; therefore, without loss of generality, b = 1. The equation

has thus the form

e− sin ty′ + cos te− sin ty = e− sin t ⇐⇒ y′ + cos ty = 1.

Solving the homogeneous equation y′ + cos ty = 0 gives y = Ce− sin t, where C is a constant

(this is clear since x = e− sin t solves this equation: xx′ − x′x = 0).

To solve the inhomogeneous equation, we apply the variation of constants method. It gives

the following equation on C = C(t):

C ′e− sin t = 1.

Hence C =
∫ t

0
esin τdτ+C0. As a fundamental system of solutions we can thus take x = e− sin t

and y = (
∫ t

0
esin τdτ)e− sin t.

3. 8+9 = 17 pts Let ω = dx ∧ dy ∧ dz be the standard volume form on R3. Recall that for a

vector field v on R3, iv(ω) is the two-form defined by

iv(ω)(u1, u2) = ω(v, u1, u2).

In what follows, v = gradf with f : R3 → R given by f = x2 + y2 − z2.

i) Compute the differential two-form igradf (ω);

ii) Compute the pull-back h?(igradf (ω)) under the map h = (s cos t, s sin t, s) : R2 → R3.
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i) Observe that gradf = 2x ∂
∂x

+ 2y ∂
∂y
− 2z ∂

∂z
. Since ω(gradf, u1, u2) is the determinant of

the matrix of components of v, u1, u2, expanding this matrix in the first row, gives

ω(gradf, u1, u2) = 2xdy ∧ dz(u1, u2)− 2ydx ∧ dz(u1, u2)− 2zdx ∧ dy(u1, u2).

Hence igradf (ω) = 2xdy ∧ dz + 2ydz ∧ dx− 2zdx ∧ dy.

ii) To compute the pull-back, it suffices to substitute in 2xdy ∧ dz + 2ydz ∧ dx− 2zdx ∧ dy

the expressions of x, y, z in terms of s, t. This gives

h?(igradf (ω)) = 2s cos td(s sin t) ∧ ds+ 2s sin tds ∧ d(s cos t)− 2sd(s cos t) ∧ d(s sin t) =

2s2 cos2 tdt ∧ ds− 2s2 sin2 tds ∧ dt− 2s(s cos2 tds ∧ dt− s sin2 tdt ∧ ds) = 4s2dt ∧ ds.

4. 8+10+10 = 28 pts Consider the following level set

M2 = {(x, y, z) ∈ R3 : x2 + y2 + z4 = 1}

and let the two-form ω be given by ω = xdy ∧ dz.

i) Verify that M2 is a regular orientable (C∞-)smooth surface in R3 (i.e., M2 is locally a

graph of a smooth function, and M2 admits a nowhere vanishing smooth two-form);

ii) Prove that the pull-back g?(ω) is closed, but not exact on M2; (here g denotes the

inclusion of M2 in R3);

iii) Compute the integral
∫
M2 g

?(ω).

i) Observe that M2 is a level set of the function f = x2+y2+z4 : R3 → R. Clearly f is smooth,

and M2 = {f = 1} is non-empty. Moreover, the gradient gradf = 2x ∂
∂x

+ 2y ∂
∂y

+ 4z3 ∂
∂z

=

(2x, 2y, 4z3) is never vanishing on M2. By the Implicit Function Theorem, M2 is locally a

graph of a smooth function and hence a regular smooth surface.

This surface is orientable since g?(igradf (dx∧dy∧dz)) is a nowhere vanishing smooth two-form

on M2.
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ii) Let Ū be the compact region enclosed by M2; specifically, let Ū = {f ≤ 1} and observe

that ∂U = M2. By Stokes’s theorem,∫
M2

g?(ω) =

∫
Ū

dω.

But dω = dx∧dy∧dz is the volume form on R3. Since Ū contains a small ball Bε(0) around

the origin, ∫
Ū

dω > 0.

But if the form g?(ω) was exact, then the integral∫
M2

g?(ω)

would be zero (again by Stokes’s, since ∂M2 = ∅). Hence g?(ω) is not exact. It is closed as

a top form on M2.

iii) To compute integral
∫
M2 g

?(ω), we again apply Stokes’s theorem as in part ii):∫
M2

g?(ω) =

∫
Ū

dω.

Since dω = dx∧ dy ∧ dz, we thus need to compute the volume of Ū . This can be done using

Fubini’s theorem as follows:∫
Ū

dx ∧ dy ∧ dz =

∫
x2+y2+z4≤1

dx ∧ dy ∧ dz =∫ 1

−1

(∫
x2+y2≤1−z4

dxdy

)
dz =

∫ 1

−1

π(1− z4)dz = 1.6π.

End of exam
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